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Dear Editor,

The objective of an ideal species-specific PCR assay (also known
as allele-specific PCR) is to always provide a positive result
whenever DNA from the target species is present and a negative
outcome when it is absent, even in the presence of DNA from other
species [1–3]. PCR primers must be designed in DNA regions where
the sequence varies significantly between the target and other
species, reliably excluding those that might contaminate casework
samples. Under suitable PCR conditions, such primers generate a
fragment that can be visualized by conventional gel or capillary
electrophoresis. However, poor design of the screening method
may lead either to a failure in the PCR in the presence of DNA from
the target species (a false negative or Type II error) or positive PCR
amplification in the absence of the target species’ DNA (false
positive or Type I error). In general, an incorrectly assigned result
may occur if the PCR primers are not sufficiently selective, the
annealing temperature is not adequately stringent or too many
amplification cycles are used in the PCR [4].

The need to develop effective methods for correct identification
of species is of growing importance in wildlife management and
forensics [5–8]. A good case study of how data from species-
specific PCR assays has been used to inform the management of an
important invasive species relates to the detection of red fox
(Vulpes vulpes) incursions on the island state of Tasmania
(Australia) [9]. After anecdotal reports claimed that red foxes
had been deliberately released into the Tasmanian environment
[10–13], a fox eradication programme based upon widespread
1080 (fluoroacetic acid) poison baiting began in 2002 [13]. In order
to detect the presence of foxes a large pool of predator faeces
(scats) was collected predominantly between 2003 and 2012 by
co-ordinated searches using volunteers [14] and routine searches
with trained scat detection dogs [15]. By late 2012, 56 of 7658 were
assigned as ‘fox positive’ using a fox-specific PCR assay targeting
mitochondrial cytochrome b (CYTB), either with [14] or without
[16] subsequent DNA sequencing. However, it was reported that
130 of 186 (70%) samples with positive PCR amplifications for fox
produced incomplete sequences of poor quality not corresponding
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to the fox reference sequence and only 56 of 186 (30%) cases were
identified as fox [14]. Moreover, it was also revealed that DNA from
European rabbit (Oryctolagus cuniculus) and European hare (Lepus

europaeus) amplified with the fox-specific PCR assay [14].
We sought to better evaluate the specificity of the putatively

fox-specific pair of PCR primers (VV-cytb F and VV-cytb R) designed
by Berry et al. [16] using DNA from a wider range of species (Table
S1; a detailed description of all experiments can be found on the
Supplementary Material). After verifying the quality of the DNA
extractions using ‘universal’ primers (Fig. S1), we tested the VV-

cytb F and VV-cytb R primers in gradient PCRs with annealing
temperatures between 51 8C and 62 8C. Foxes and several other
species yielded positive amplifications at different annealing
temperatures (e.g. Fig. S2). Additionally, separate PCRs (not in a
gradient) using annealing temperatures of 56 8C, 58 8C (used by
Berry et al. [16]) and 60 8C (used by Sarre et al. [14]) produced clear
amplifications for fox, European rabbit, European hare, Iberian
hare (Lepus granatensis), cattle (Bos taurus) and pig (Sus scrofa) DNA
(Fig. 1, Tables S1 and S2). PCR products were also obtained for the
Tasmanian devil (Sarcophilus harrisii) and a long-nosed potoroo
(Potorous tridactylus) with weaker intensity. At an annealing
temperature of 56 8C, a single cattle sample (Bt1) and one rabbit
(Oc2), the Iberian hare (Lg1) and both pig DNA samples yielded a
larger quantity of amplified PCR product than either fox sample,
suggesting that in some cases the primers designed by Berry et al.
[16] amplified non-fox DNA more effectively. DNA from rabbit,
hare, cattle and pig are readily amplified even at 60 8C (Fig. 1).
Because DNA from hare is amplified at 62 8C (Fig. S2), non-specific
DNA synthesis occurs at even higher annealing temperatures than
those reported by Berry et al. [16] and Sarre et al. [14].

The selectivity of a species-specific primer depends on the
number of base pair mismatches in relation to other non-target
species, with mismatches at the 30-end of the primer having a
larger impact on PCR yield than those near the 50-end [8,17,18].
Under less stringent conditions, a single mismatch in the 30-end of
each primer might not be sufficient to completely abrogate the PCR
amplification [17,18] and the presence of up to four mismatches in
the primer–template duplexes may not significantly affect product
yield [19]. Using the Berry et al. [16] assay, up to nine mismatches
in both primers were insufficient to avoid strong PCR amplifica-
tions with DNA from other species, as were demonstrated in the
pig DNA samples (Figs. 1 and S3). A low number of mismatches in
the putative fox-specific primers relative to other species were
evident from the alignment of 33 CYTB sequences (Fig. S4).
Therefore, the putatively fox-specific primers VV-cytb F and VV-

cytb R did not specifically hybridize to fox DNA, despite being
designed with the intention to specifically exclude species with
morphologically similar scats to the fox [20].

Scats of omnivores with a highly varied diet, such as foxes,
quolls (Dasyurus sp.), bandicoots (Peramelidae) as well as
scavengers such as the Tasmanian devil [21] contain a complex
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Fig. 1. Amplification of DNA from several species using the putatively CYTB fox-specific VV-cytb F and VV-cytb R primers designed by Berry et al. [16]. Agarose gel (2%) showing

the amplification products obtained at annealing temperatures of 56 8C (A), 58 8C (B) and 60 8C (C). Legend: Vv1 and Vv2, red fox (Vulpes vulpes); Oc1 and Oc2, rabbit

(Oryctolagus cuniculus); Le1, European hare (Lepus europaeus); Lg1, Iberian Hare (Lepus granatensis); Sh1 and Sh2, Tasmanian devil (Sarcophilus harrisii); Pt1, long-nosed

potoroo (Potorous tridactylus); Bt1 and Bt2, cattle (Bos taurus); Ss1 and Ss2, pig (Sus scrofa); NC, negative control; L, 100-bp DNA ladder.
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mixture of partially degraded biological material, including host-
derived epithelial cells from the colon wall, undigested prey,
enteric microorganisms and parasites. Even if obvious prey
contents are separated in the scat prior to analysis, the possibility
of contamination throughout the faecal material must be assumed.
Our results demonstrate that strong amplifications using the
putatively fox-specific assay are obtained with DNA from widely
distributed prey species such as the European rabbit, European
hare as well as that from common agricultural species such as
cattle and pigs. European rabbits are particularly common in the
diet of feral cats and foxes [22] and rabbits and hares are common
as road kill [23] that is known to be scavenged as a food resource by
marsupial carnivores such as Tasmanian devils and quolls [24].
Other common domestic livestock species appear to constitute a
greater risk of sample contamination from multiple routes. Meat
carryover in human faeces in sewage as well as waste from
kitchens, abattoir and food manufacturing processes are therefore
potentially significant environmental source of cattle and pig DNA
[25]. Commercial dog foods may also contain a wide range of cattle
meat and by products such as hooves and horns [26] and both
cattle and pig products are components of a range of fox baits [27].

Consequently, the species-specific assay proposed by Berry
et al. [16] must contend with the likelihood of strong PCR
amplification arising from extremely abundant forms of non-fox
DNA. Irrespective of what post-PCR laboratory methods are used,
VV-cytb F and VV-cytb R do not permit sufficient specificity for the
unequivocal determination of fox DNA. The fox-specific assay was
developed without adequate cross-reactivity studies to exclude
unspecific amplifications. Because the generally low quality and
quantity of DNA found in scats typically requires less stringent PCR
conditions, such as decreased annealing temperature and in-
creased number of amplification cycles [14], there may be a higher
risk of amplifying nonspecific sequences [4,28–30]. Therefore, this
diagnostic assay alone cannot be relied upon to detect red foxes
because of the high likelihood of false positives. Because wildlife
management decisions may be increasingly influenced by data
generated by molecular technologies, there is a need to adopt best
practice guidelines for forensic genetic investigations [1,6,31–33]
especially under conditions when the detection of a unique
invasive species may be considered sufficient justification to
initiate a costly eradication programme. This case is a practical
illustration of the challenges associated with the design of reliable
species-specific PCR assays and the need to better standardize
practices used for taxonomic identifications in wildlife and
forensic genetic investigations.
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